iterated cryptosystem - significado y definición. Qué es iterated cryptosystem
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es iterated cryptosystem - definición

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

Iterated Function System         
  • Construction of an IFS by the [[chaos game]] (animated)
  • Apophysis]] software and rendered by the [[Electric Sheep]].
  • IFS "tree" constructed with non-linear function Julia
  • [[Barnsley's fern]], an early IFS
  • IFS being made with two functions.
  • [[Menger sponge]], a 3-Dimensional IFS.
METHOD ALLOWING THE CONSTRUCTION OF SELF-SIMILAR FRACTALS
Iterated function systems; Iterated Function System; Iterated Function Systems
<graphics> (IFS) A class of fractals that yield natural-looking forms like ferns or snowflakes. Iterated Function Systems use a very easy transformation that is done recursively. (1998-04-04)
Iterated function system         
  • Construction of an IFS by the [[chaos game]] (animated)
  • Apophysis]] software and rendered by the [[Electric Sheep]].
  • IFS "tree" constructed with non-linear function Julia
  • [[Barnsley's fern]], an early IFS
  • IFS being made with two functions.
  • [[Menger sponge]], a 3-Dimensional IFS.
METHOD ALLOWING THE CONSTRUCTION OF SELF-SIMILAR FRACTALS
Iterated function systems; Iterated Function System; Iterated Function Systems
In mathematics, iterated function systems (IFSs) are a method of constructing fractals; the resulting fractals are often self-similar. IFS fractals are more related to set theory than fractal geometry.
Goldwasser–Micali cryptosystem         
ASYMMETRIC KEY ENCRYPTION ALGORITHM
Goldwasser-Micali; Goldwasser-Micali encryption; Goldwasser-Micali cryptosystem; Goldwasser-Micali encryption scheme
The Goldwasser–Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the distinction of being the first probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.